GEOMETRY: EXAMPLES 1

1. Given a real constant c, let $\Sigma=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-z^{2}=c\right\}$.
(a) Sketch Σ for a representative selection of values of c.
(b) For which values is Σ an embedded surface in \mathbb{R}^{3} ? Justify your answer.
(c) Write down parametrisations covering Σ in the cases where it is an embedded surface.
2. Show that a subset $\Sigma \subset \mathbb{R}^{3}$ is an embedded surface iff for all p in Σ there exists an open neighbourhood T of p in \mathbb{R}^{3}, an open neighbourhood W of the origin in \mathbb{R}^{3}, and a diffeomorphism $g: T \rightarrow W$ such that $g(T \cap \Sigma)=W \cap\left(\mathbb{R}^{2} \times\{0\}\right)$.
3. Show that the map $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
\sigma(u, v)=\left(\frac{u}{1+u^{4}}, v, \frac{u^{2}}{1+u^{4}}\right)
$$

is smooth, that it is a bijection onto its image Σ, and that $D_{q} \sigma$ is injective for all $q \in \mathbb{R}^{2}$. Sketch Σ and show that it is not an embedded surface.
4. Consider the polar and Cartesian parametrisations $\sigma(r, \theta)=(r \cos \theta, r \sin \theta)$ and $\tau(x, y)=(x, y)$ of \mathbb{R}^{2} near $p \neq 0$.
(a) Sketch the vectors $\sigma_{r}, \sigma_{\theta}, \tau_{x}$, and τ_{y} at a selection of points.
(b) Using the the change of basis formula from lectures, express τ_{x} and τ_{y} in terms of σ_{r} and σ_{θ}. [Hint: use the chain rule to avoid expressing r and θ in terms of x and y.]
(c) Verify your answer using explicit expressions for σ_{r} and σ_{θ}.
5. Let $F: \Sigma_{1} \rightarrow \Sigma_{2}$ be a smooth map between embedded surfaces. Given $p \in \Sigma_{1}$ define a map

$$
D_{p} F: T_{p} \Sigma_{1} \rightarrow T_{F(p)} \Sigma_{2}
$$

as follows. Pick parametrisations σ_{1} of Σ_{1} near p and σ_{2} of Σ_{2} near $F(p)$ with WLOG $\sigma_{1}(0)=p$ and $\sigma_{2}(0)=F(p)$. Note that $D_{0} \sigma_{1}$ gives a linear isomorphism $\mathbb{R}^{2} \rightarrow T_{p} \Sigma_{1}$. Define

$$
D_{p} F=D_{0} \sigma_{2} \circ D_{0}\left(\sigma_{2}^{-1} \circ F \circ \sigma_{1}\right) \circ\left(D_{0} \sigma_{1}\right)^{-1} .
$$

(a) Show that this is independent of the choices of σ_{1} and σ_{2}.
(b) Show that if $v \in T_{p} \Sigma_{1}$ is given by $\dot{\gamma}(0)$, for a smooth map $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{3}$ with image contained in Σ_{1} and with $\gamma(0)=p$, then $D_{p} F(v)=(F \circ \gamma)^{\bullet}(0)$. [Hint: Write γ in the form $\sigma_{1} \circ \Gamma$.]
6. Let $\sigma^{ \pm}: \mathbb{R}^{2} \rightarrow S^{2}$ be the inverse stereographic projection parametrisations, given by

$$
\sigma^{ \pm}(u, v)=\frac{1}{u^{2}+v^{2}+1}\left(2 u, 2 v, \pm\left(u^{2}+v^{2}-1\right)\right) .
$$

Identify \mathbb{R}^{2} with \mathbb{C} and let $P: \mathbb{C} \rightarrow \mathbb{C}$ be a non constant complex polynomial. Define $F: S^{2} \rightarrow S^{2}$ by

$$
F(p)= \begin{cases}\sigma^{+} \circ P \circ\left(\sigma^{+}\right)^{-1}(p) & \text { if } p \in S^{2} \backslash\{(0,0,1)\} \\ (0,0,1) & \text { if } p=(0,0,1) .\end{cases}
$$

(a) Show that F is smooth.
(b) For $P(\zeta)=\zeta^{3}+\zeta^{2}+1$, at which points is F a local diffeomorphism?
7. Show that the Möbius band, defined to be the image of the map $\sigma:(-1,1) \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ given by

$$
\sigma(u, v)=\left(\left(2+u \cos \frac{v}{2}\right) \cos v,\left(2+u \cos \frac{v}{2}\right) \sin v, u \sin \frac{v}{2}\right),
$$

is not orientable. [Hint: Take Gauss maps n_{1} and n_{2} defined where $v \in(-\pi, \pi)$ and $v \in(0,2 \pi)$ respectively, and compare a putative global Gauss map n with them.]
8. Suppose that Σ is an embedded surface defined by the vanishing of single function, i.e. that $\Sigma=$ $f^{-1}(0)$ where f is a smooth function on an open subset of \mathbb{R}^{3} satisfying $D_{p} f \neq 0$ for all $p \in \Sigma$. Show that Σ is orientable, and deduce that there exist embedded surfaces that cannot be defined by the vanishing of a single function.

