GEOMETRY: EXAMPLES 1

- 1. Given a real constant c, let $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = c\}.$
 - (a) Sketch Σ for a representative selection of values of *c*.
 - (b) For which values is Σ an embedded surface in \mathbb{R}^3 ? Justify your answer.
 - (c) Write down parametrisations covering Σ in the cases where it *is* an embedded surface.
- 2. Show that a subset $\Sigma \subset \mathbb{R}^3$ is an embedded surface iff for all p in Σ there exists an open neighbourhood T of p in \mathbb{R}^3 , an open neighbourhood W of the origin in \mathbb{R}^3 , and a diffeomorphism $g: T \to W$ such that $g(T \cap \Sigma) = W \cap (\mathbb{R}^2 \times \{0\})$.
- 3. Show that the map $\sigma : \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$\sigma(u,v) = \left(\frac{u}{1+u^4}, v, \frac{u^2}{1+u^4}\right)$$

is smooth, that it is a bijection onto its image Σ , and that $D_q \sigma$ is injective for all $q \in \mathbb{R}^2$. Sketch Σ and show that it is not an embedded surface.

- 4. Consider the polar and Cartesian parametrisations $\sigma(r, \theta) = (r \cos \theta, r \sin \theta)$ and $\tau(x, y) = (x, y)$ of \mathbb{R}^2 near $p \neq 0$.
 - (a) Sketch the vectors σ_r , σ_θ , τ_x , and τ_y at a selection of points.
 - (b) Using the change of basis formula from lectures, express τ_x and τ_y in terms of σ_r and σ_{θ} . [*Hint: use the chain rule to avoid expressing* r *and* θ *in terms of* x *and* y.]
 - (c) Verify your answer using explicit expressions for σ_r and σ_{θ} .
- 5. Let $F : \Sigma_1 \to \Sigma_2$ be a smooth map between embedded surfaces. Given $p \in \Sigma_1$ define a map

$$D_pF: T_p\Sigma_1 \to T_{F(p)}\Sigma_2$$

as follows. Pick parametrisations σ_1 of Σ_1 near p and σ_2 of Σ_2 near F(p) with WLOG $\sigma_1(0) = p$ and $\sigma_2(0) = F(p)$. Note that $D_0\sigma_1$ gives a linear isomorphism $\mathbb{R}^2 \to T_p\Sigma_1$. Define

$$D_p F = D_0 \sigma_2 \circ D_0 (\sigma_2^{-1} \circ F \circ \sigma_1) \circ (D_0 \sigma_1)^{-1}.$$

- (a) Show that this is independent of the choices of σ_1 and σ_2 .
- (b) Show that if $v \in T_p \Sigma_1$ is given by $\dot{\gamma}(0)$, for a smooth map $\gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}^3$ with image contained in Σ_1 and with $\gamma(0) = p$, then $D_p F(v) = (F \circ \gamma)^{\bullet}(0)$. [*Hint: Write* γ *in the form* $\sigma_1 \circ \Gamma$.]
- 6. Let $\sigma^{\pm} : \mathbb{R}^2 \to S^2$ be the inverse stereographic projection parametrisations, given by

$$\sigma^{\pm}(u,v) = \frac{1}{u^2 + v^2 + 1} (2u, 2v, \pm (u^2 + v^2 - 1)).$$

Identify \mathbb{R}^2 with \mathbb{C} and let $P: \mathbb{C} \to \mathbb{C}$ be a non constant complex polynomial. Define $F: S^2 \to S^2$ by

$$F(p) = \begin{cases} \sigma^+ \circ P \circ (\sigma^+)^{-1}(p) & \text{if } p \in S^2 \setminus \{(0,0,1)\} \\ (0,0,1) & \text{if } p = (0,0,1). \end{cases}$$

(a) Show that *F* is smooth.

(b) For $P(\zeta) = \zeta^3 + \zeta^2 + 1$, at which points is *F* a local diffeomorphism?

7. Show that the Möbius band, defined to be the image of the map $\sigma : (-1,1) \times \mathbb{R} \to \mathbb{R}^3$ given by

$$\sigma(u,v) = \left(\left(2 + u\cos\frac{v}{2}\right)\cos v, \left(2 + u\cos\frac{v}{2}\right)\sin v, u\sin\frac{v}{2} \right),$$

is not orientable. [*Hint: Take Gauss maps* n_1 and n_2 defined where $v \in (-\pi, \pi)$ and $v \in (0, 2\pi)$ respectively, and compare a putative global Gauss map n with them.]

8. Suppose that Σ is an embedded surface defined by the vanishing of single function, i.e. that $\Sigma = f^{-1}(0)$ where f is a smooth function on an open subset of \mathbb{R}^3 satisfying $D_p f \neq 0$ for all $p \in \Sigma$. Show that Σ is orientable, and deduce that there exist embedded surfaces that cannot be defined by the vanishing of a single function.